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ABSTRACT

Deep neural networks (DNNs) are successful in applications
with matching inference and training distributions. In real-
world scenarios, DNNs have to cope with truly new data
samples during inference, potentially coming from a shifted
data distribution. This usually causes a drop in performance.
Acoustic scene classification (ASC) with different recording
devices is one of this situation. Furthermore, an imbalance
in quality and amount of data recorded by different devices
causes severe challenges. In this paper, we introduce two
calibration methods to tackle these challenges. In particular,
we applied scaling of the features to deal with varying fre-
quency response of the recording devices. Furthermore, to
account for the shifted data distribution, a heated-up softmax
is embedded to calibrate the predictions of the model. We use
robust and resource-efficient models, and show the efficiency
of heated-up softmax. Our ASC system reaches state-of-the-
art performance on the development set of DCASE challenge
2019 task 1B with only ∼70K parameters. It achieves 70.1%
average classification accuracy for device B and device C.
It performs on par with the best single model system of the
DCASE 2019 challenge and outperforms the baseline system
by 28.7% (absolute).

Index Terms— Acoustic scene classification, spectrum
correction, heated-up softmax, temperature scaling, calibra-
tion of confidence prediction.

1. INTRODUCTION

Acoustic scene classification (ASC) is a multi-class classi-
fication task recognizing the recorded environment sounds
as specific acoustic scenes that characterize either the loca-
tion or situation such as park, metro station, tram, etc. It is
used for various applications including acoustic surveillance,
robot navigation, context awareness and for acoustic record-
ing analysis.

Recently, the DCASE challenges have introduced mis-
matches in the recording date/time and recording devices for
the training and inference datasets. DCASE 2018 and 2019
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proposed the mismatch in different recording devices A, B,
C and D. A gap in amount and quality of the recorded data
causes over-fitting on data of device A. Especially, a part of
the evaluation set is a compressed version of recorded audio
data from device D that is not included in the development
data set. This brings ASC closer to real-world conditions.

To deal with this challenge, there are many proposed
methods focusing on the entropic capacity of the model in
order to enhance generalization performance. Almost all
proposed systems use ensemble techniques such as averag-
ing, weight averaging ensembles [1], [2], ensemble selec-
tion [3], [4], random forests [5], or snapshot averaging [6].
This leads to improved performance at the cost of a huge
memory footprint. For diversity of individual component
models of the ensemble, different features are used such as
log-mel energies, their nearest neighbor filtered version [4],
mel-spectrograms from harmonic percussive source separa-
tion (HPSS) audio [5], [7], and spectrograms of Gammatone
filters and Constant Q Transform (CQT) [8].

Furthermore, domain adaptation and transfer learning
have been attractive approaches for the mismatched ASC
tasks [9], [10] [6], [11]. Alternatively, a deep within-class
covariance analysis (DWCVA) layer [12] or a mixture of
experts (MoEs) layer [13] embedded in a neural network
model are effective. In addition, regularization and data
augmentation such as mixup, SpecAugment [14] or tempo-
ral cropping are used in almost all ASC systems to avoid
over-fitting. One particular interesting approach is spectrum
correction [2] to adjust the varying frequency response of
the recording devices. This simple but effective spectrogram
magnitude scaling was key of the best system of the DCASE
2019 challenge task 1B.

In this paper, we introduce a “softening” of the softmax
in output layer (i.e. we raise the output entropy) in order to
boost the generalization ability of the model. In particular, we
use temperature scaling from knowledge distillation [15] and
calibration of neural networks [16]. The temperature scal-
ing can be seen as a heated-up softmax embedding in met-
ric learning [17]. Different temperature values will assign
gradients with different magnitudes during training and thus
change the distributions of DNN features. We use the heated-

126978-1-5090-6631-5/20/$31.00 ©2020 IEEE ICASSP 2020

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on September 05,2022 at 02:28:15 UTC from IEEE Xplore.  Restrictions apply. 



  

Dense (C units) 

Scene Label10s Mono Audio 

Log-Mels (256x862) 

STFT

Spectrum 
Correction

Normalization p(m∣x)=
exp( zm /T )

∑ j=1
M exp (z j/T )

p j=
exp (z j /T )

∑
m=1

C

exp (zm /T )

Heated-up
Softmax

Conv2D Block 1

Conv2D Block 2

Conv2D Block 5

GAP

...

Fig. 1. Proposed System.

up softmax to calibrate the class distribution of classes of the
model. It enhances the generalization performance and is able
to account for the shifted data distribution of the ASC task.
Furthermore, we are particularly interested in a robust ASC
model with good performance but with a low number of pa-
rameters. Therefore, we use the base model of the best sys-
tem in DCASE 2019 task 1B which includes spectrum correc-
tion [2]. We introduce the heated-up softmax and prove its ef-
ficiency. In addition, we exploit the focal loss used in [18], [2]
to deal with difficult samples.

The rest of the paper is organized as follows. Section
2 presents the proposed ASC system, including audio pre-
processing and spectrum correction, the focal loss, heated-up
softmax and the convolutional neural network model. Section
3 provides experiments and the performance of the proposed
approach. Section 4 concludes the paper.

2. PROPOSED ARCHITECTURE

The proposed system is illustrated in Fig. 1. The system con-
sists of two important stages. Firstly, mono audio signals are
converted to time-frequency representations, scaled by spec-
trum correction, and zero mean and unit variance normaliza-
tion. Secondly, these features are fed to a CNN model for
feature learning. The output layer includes a dense layer of C
classes and a heated-up softmax for classification.

2.1. Audio Pre-processing and Spectrum Correction

We process audio utterance with the same setting as in [2].
The sampling rate is 44.1 kHz. The audio segments are 10
s in length. The short-time Fourier transform (STFT) uses a
Hanning window. The window size and hop size are 2048
and 512 samples, respectively. The hop size is small in order
to increase the frequency resolution of the STFT with 862
temporal frames. This number is larger compared to other
state-of-the-art systems.

The spectrum correction proposed in [2] scales the fre-
quency response of the recording devices. In particular, the

magnitude of the STFTs is scaled using one coefficient for
each frequency bin. The coefficients are calculated for each
device based on data from reference devices i.e. all devices A,
B and C or devices B and C. We use 540 samples of data from
each device A, B, and C to determine the reference spectrum
and the coefficients of each device instead of 30 sample pairs
of data from devices B and C as in [2]. This increases the
robustness of the coefficients. The magnitude spectrogram of
each sample is averaged along time axis; providing a mean
spectrum. The reference spectrum is furthermore averaged
over 3x540 mean spectra of the reference data. Similarly, the
device spectrum is averaged over the mean spectrum of 540
reference samples of each device. The scaling coefficients of
each device is the element-wise fraction of the reference spec-
trum and its corresponding device spectrum. The spectrum
coefficients are represented as a vector i.e. one coefficient for
each frequency bin. We scale the spectrogram bin of each
device by the corresponding coefficient. We empirically ob-
serve that the normalization in spectrogram domain is more
successful than in log-mel domain.

After scaling in the STFT magnitude domain, the spectro-
gram is further processed in log-mel domain using 256 mel
filters. Subsequently, zero mean and unit variance normal-
ization is applied to the log-mel features. Consequently, we
extract log-mel energies of 256 frequency bins and 862 tem-
poral frames per segment.

2.2. Focal loss

For multi-class classification tasks cross-entropy (CE) is a
popular loss function:

CE(p, y) = −
C∑
j=1

yj log(pj), (1)

where pj is the estimated probability of the model for class j
of a sample, yj is a binary indicator (0 or 1) if class j is the
correct classification for the sample. C denotes the number of
classes.

However, for tasks with shifted data distribution the focal
loss is a better choice than the CE loss because of its abil-
ity in dealing with difficult samples. The loss function is a
dynamically scaled cross entropy loss, where the scaling fac-
tor decays to zero as confidence in the correct class increases.
This scaling factor can automatically down-weight the con-
tribution of simple samples during training and rapidly focus
the model on samples which are hard to classify [19], i.e. the
focal loss (FL) is defined as:

FL(p, y) = −
C∑
j=1

(1− pj)γyj log(pj), (2)

where the focusing parameter γ smoothly adjusts the rate at
which simple samples are down-weighted. We choose γ = 1.
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Table 1. Details of the CNN model.
Layer Output Kernel size Stride
Input layer 256x862x1 - -
Conv2D+ReLu+BN 254x862x16 3x3 1
Conv2D+ReLu+BN 126x429x32 3x3 2
Conv2D+ReLu+BN 124x427x32 3x3 1
Conv2D+ReLu+BN 61x213x64 3x3 2
Conv2D+ReLu+BN 59x211x64 3x3 1
GAP 64 - -
Output layer 10 - -

2.3. Heated-up Softmax

Temperature scaling is surprisingly effective at calibrating
predictions [16]. A probability estimate of a class is typically
produced by using a “softmax” output layer that converts the
logit zj , computed for each class into a probability, i.e. pj .
The heated-up softmax is defined as follows:

pj =
exp (zj/T )∑C

m=1 exp (zm/T )
, (3)

where T denotes the temperature. Using a higher value for T
produces a softer probability distribution over classes [15].

In our experiments, we visualized the DNN feature distri-
bution of the model and its performance with respect to the
temperature values. The model performs well for shifted data
distributions of the ASC task with large temperature values
embedded in the softmax function.

2.4. Convolutional Neural Network

We use a robust CNN model with a modest number of pa-
rameters [2]. It consists of five convolutional compositions
with different number of filters and stride. Each convolu-
tional composition includes a convolution layer using ReLU
activations and a batch normalization layer (Conv2D-ReLU-
BN). The stride of 2 is used in the convolutional layer to de-
crease the spatial dimension of the convolutional outputs, i.e.
time-frequency representation, by a factor of 2. It reduces the
computational time and complexity for the following layers
in the training phase as well as avoids over-fitting. In addi-
tion, a global average pooling (GAP) layer is added after the
last convolution composition. The GAP layer allows to re-
duce the number of outputs of the previous layer. After the
GAP layer, a dense output layer of 10 units corresponding to
10 classes of linear activations is used. These outputs are fed
to a heated-up softmax, which converts them to a probability
distribution over predicted output classes. The CNN model is
shown in Fig. 1 and Table 1 lists the details.

Table 2. Accuracy of the CNN model with T = 1 on test set
for focal loss and CE loss. Spectrum correction is performed
using Ref.ABC, Ref.BC, and NoCorrection.

Loss Focal loss CE loss
Type Dev. A Avg. Dev.[BC] Dev. A Avg. Dev.[BC]
Ref.ABC 72.3 67.6 72.1 67.3
Ref.BC 70.27 65.9 72.0 66.4
NoCorrection 71.6 58.6 70.4 58.4

3. EXPERIMENTS

3.1. Data

The audio dataset for the ASC task 1B is the TAU Urban
Acoustic Scene 2019 Mobile dataset1. It consists of 10
scenes. Since the evaluation dataset has been provided with-
out ground truth labels, we use the development set which
is officially split into training and test sets to train and eval-
uate the models. The development set is comprised of the
task 1A data set recorded by using always the same binaural
microphone at a sampling rate of 48kHz. The recordings
are resampled and averaged into a single channel. A small
amount of data is recorded by other devices. The original
recordings were split into 10s segments that are provided in
individual files. The number of segments for device A in the
training and test sets are 9185 and 4185, respectively. For
devices B and C there are 540 segments for both the training
and test set.

3.2. Setup

The test set is used as validation set during training and as fi-
nal evaluation set. Other experimental settings are similar as
in [2]. In particular, training of the network is carried out by
optimizing the multi-class focal loss using the Adadelta op-
timizer. We reduce the learning rate by a factor of 0.1 when
the validation accuracy has not improved for more than 16
epochs. The maximum learning rate is 0.5. We use the Glo-
rot uniform initializer for the network weights. The number
of epochs and batch size was 150 and 64, respectively. Data
is shuffled between the epochs. We select the model which
obtains the best validation set performance. In addition, we
perform mixup data augmentation [20] with an α of 0.2 with-
out SpecAugment [14] as in [2]. Furthermore, weight decay
of 10−5 is used in order to enhance the robustness of the pro-
posed system.

3.3. Performance

Representations of the GAP layer’s outputs for different tem-
peratures T are projected to 2D using principal component
analysis (PCA). This is shown in Fig. 2. We can see that with
increasing temperature the data distribution of each class gets

1http://dcase.community/challenge2019/task-acoustic-scene-
classification
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Fig. 2. GAP output representations projected to 2D by PCA.
Distributions of test set (1st row), and training set (2nd row)
for T = 1 (1st column), T = 5 (2nd column), T = 10 (3rd

column), T = 35 (4th column) using spectrum correction with
reference data of all devices A, B and C. The color denotes the
classes.

Fig. 3. Accuracy depending on corresponding temperatures T
and spectrum corrections using reference data of all devices
A, B, and C (Ref.ABC), reference data of devices B and C
(Ref.BC) and no spectrum correction (NoCorrection).

better separated. This explains the benefit of the heated-up
softmax. Furthermore, the consistency in the distribution of
each class between training set and test set is improved when
the temperature increases. This proves the efficiency of the
heated-up softmax in dealing with shifted data distributions.

Table 2 shows the performance of the CNN model us-
ing the focal loss and CE loss for different spectrum correc-
tions. There is a big gap in performance when using spec-
trum corrections with reference data of all devices A, B and C
(Ref.ABC) and reference data of devices B and C (Ref.BC)
compared to no spectrum correction (NoCorrection). The
advantage of the focal loss is not so obvious compared to
the CE loss. To be consistent for comparison with the base
model [2], we use the focal loss for our experiments of the
heated-up softmax.

Fig. 3 presents the accuracy of the model using Ref.ABC,
Ref.BC spectrum corrections2 or NoCorrection for different
temperature values. Best results are obtained for Ref.ABC on
T = 10.

2Ref.ABC and Ref.BC denote spectrum corrections using reference data
of all devices A, B, and C and reference data of devices B and C, respectively.

Table 3. Performance comparison on test set of the DCASE
2019 task 1B. Our best performing models using Ref.ABC
and Ref.BC with different temperatures are marked as bold.
(M is million).
System Dev.A Dev.B Dev.C Ave.BC Param.
Baseline [21] 61.9 39.6 43.1 41.4 -

±0.8 (±2.7) ±2.2 ±1.7 -
Base model Kosmider SRPOL [2] 72 - - 70 70,954
McDonnell USA task1b 3 [22] - - - 66.3 6M
Primus CPJKU task1b 4 [11] - - - 65.1 26M
LamPham KentGroup task1b 1 [8] - 55.3 62.3 58.8 6M
Song HIT task1b 3 [23] - - - 70.3 68M
Jiang UESTC task1b 2 [24] - - - 64.2 1M
Base model Ref.ABC T10 73.4 66.5 73.7 70.1 70,954
Base model Ref.ABC T15 72.3 66.9 72.6 69.7 70,954
Base model Ref.BC T30 72.2 65.9 72.8 69.4 70,954
Base model NoCorrection T1 71.6 58.0 59.3 58.6 70,954
Base model NoCorrection T20 72.8 60.9 63.0 62.0 70,954

We compare our models to the top performing models of
DCASE 2019 challenge task 1B3 on the test set in Table 3.
Our models (bold) outperform nearly all of the benchmark
models with a modest number of 70K parameters. We are
on par in terms of performance and number of parameters
with the base model [2] which uses more data augmentation
methods i.e. SpecAugment.

4. CONCLUSION

We propose temperature scaling of the softmax activation
function, namely heated-up softmax, for acoustic scene clas-
sification (ASC). It is effective in addressing the mismatch of
the recording devices in the ASC task provided by DCASE
2019. We analyze the influence of temperature values on the
performance. The benefits of heated-up softmax are visual-
ized by PCA. This empirically proves the ability in handling
the shifted data distribution. In addition, different versions of
spectrum corrections are used. They are useful in boosting the
performance of the model compared to using only zero mean
and unit variance normalization. Our models outperform
many state-of-the-art models of the DCASE 2019 challenge
ASC task. We obtain 70.1% accuracy using about 70 thou-
sand parameters. This accuracy is 28.7% (absolute) higher
than the baseline model of the DCASE 2019 challenge.
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